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Technical Progress for the First Year (1993)

SUMMARY

Experiment : An energetic electron belt has been created in a laboratory terrella for the
first time. Measurements indicate the trapped-electron belt to be localized in radius and
have a non-Maxwellian energy distribution ranging from 10 to 40 keV. Using multiple
probes, we have clearly identified drift-resonant instabilities leading to rapid radial
transport. Transport in a dipole appears to require multiple modes, and its "bursty"
nature suggests a profile relaxation of the energetic electrons which self-stabilizes the
drift-resonant instabilities.

Theory : Substorms in the magnetosphere cause the generation of major electromagnetic
disturbances and energetic particles. We examine the role of the collisionless tearing
instability as a possible mechanism for substorms. Global asymptotic magnetotail
equilbria which are slowly varying in the Earth-Sun direction are constructed, including
all three components of the magnetic field. Some of these equilibria are analyzed for
stability with respect to collisionless electron tearing modes. It is found that the ion
tearing instability, which has been widely invoked as a possible trigger for subtorrns, does
not exist. The By field is demonstrated to have a destabilizing effect on electron tearing
modes. Regimes in which collisionless tearing modes can grow are delineated.

THE COLLISIONLESS TERRELLA EXPERIMENT

The "Collisionless Ten-ella Experiment", or CTX, is a relatively new laboratory
experiment built at Columbia University in order to directly observe the unique and
fundamental properties of collisionless radial transport of plasma trapped within planetary
magnetospheres. Collisionless radial transport in a dipole-confined plasma occurs only
when wave-particle interactions are sufficiently intense and broad-banded and when the
particle motion satisfies well-defined conditions for chaos. The primary goals of our
experiments are (I) to directly observe the conditions required for the onset of radial
transport, (2) to study the evolution of the plasma profiles undergoing radial transport,
and (3) to develop and test a generalized model for radial transport applicable to trapped
plasma in the earth's magnetosphere. This laboratory program is particularly exciting
since (1) CTX is the first collisionless dipole laboratory experiment capable of observing
collisionless radial transport, (2) plasma waves can be produced in the laboratory which
break only a particle's third adiabatic invariant making radial transport relatively simple
to characterize, and (3) the impact of collisionless transport on a plasma's global profile
is predicted to have an unique signature that should be readily identified.

Our first experiments with CTX have focused on the dynamics of an "artificial
radiation belt" consisting of trapped electrons with energies between 10 and 30 keV. The
electrons are created by adjusting our microwave plasma source for direct cyclotron 0
heating of magnetically-trapped electrons. The electrons generated have a collisional 0

mean-free-path longer than 1,000 drift orbits about the equator, and they provide the ideal
laboratory medium with which to study colllisionless radial transport in dipole geometry.

Figure 1 shows the time history of a typical CTX discharge and the production of an
energetic electron belt. The discharge duration was arbitrarily programmed to last
approximately 0.5 sec, and the several signals represent the time history of the ion- '

'Ant I ol
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saturation current to a Langmuir probe, the hydrogen gas pressure, the forward and
reflected microwave power, and the x-ray spectra as recorded by a krypton proportional
counter. The experiment is fully computer controlled, and the gas pressure, pulse length,
and heating power can be programmed independently for each discharge. For discharges
similar to that shown in Figure 1, intense fluctuations are observed both during the
microwave heating and during the "afterglow" when the heating power has been
switched-off. These fluctuations only occur in the presence of the energetic electron belt,
and we have characterized them as a complex and nonlinear development of drift-
resonant hot electron interchange instabilities (HEI). In some respects, the HEI is the
electrostatic "analog" of symmetric electromagnetic kinetic Alfvdn instabilities occurring
in planetary magnetospheres.

Figure 2 shows the probe fluctuations on a faster, 10 msec, time-scale. During the
microwave heating, quasi-periodic "bursts" are observed; whereas, during the afterglow,
the probe signals are seen to evolve more gradually. The quasi-periodic bursts
correspond to rapid radial transport of electrons from the belt region. This is observed
directly with a gridded electron detector and indirectly by large and negative decrease in
the probe's floating potential.

By using very high-speed data recorders, we have identified the drift-resonant
instabilities inducing this rapid electron transport. Figure 3 shows a frequency
spectrogam of the instabilities occurring both during the microwave heating and during
the afterglow. During the heating, the quasi-periodic pulsations consist of relatively
wide-band signals ranging from 0.1 MHz 5f < 2 MHz. In contrast, the instabilities
observed during the afterglow consist of a multi-mode collection of relatively coherent
rising tones. Closer examination of the quasi-periodic bursts during heating also show a
collection of rising tones. The difference in the frequency spectra can be linked to the
energy of the electron belt as measured with the x-ray proportional counter. When the
average belt energy is relatively low, (E) - 10 keV, (such as found during the heating),
the wave frequency is also relatively low. During the afterglow, when the cooler electrons
scattering into the terrella's polar regions, (E) increases, and the frequency of drift-
resonant instabilities also increase. The rate of rise of the frequency is also linked to the
average energy of the trapped electron belt.

Multiple probes are used to determine the azimuthal and radial structure of the drift-
resonant waves. When the probes are located on the same flux surface, the two probes
indicate that the waves propagate in the electron drift direction, and the wave spectrum
consists of multiple azimuthal mode numbers, m, as well as multiple frequencies. When
the probes are separated radially, we observe the radial mode structure to be relatively
broad with complex phase-fronts characteristics.

Although the CTX experiment has been operating for less than one year, our early
results already have important implications for understanding the basic process of
collisionless radial transport in a dipole magnetic field:

First, transport in a dipole magnetic field seems to require multiple modes.
This is a unique property of the dipole magnetic geometry resulting from the
strong radial dependence of a particle's azimuthal drift frequency, cod - L-2,
where L is the equatorial radius of a flux surface. Global transport can only
occur with multiple modes since a particle does not remain correlated with a
single wave as it diffuses radially.

Secondly, the radial transport rate is fast. In CTX, large electron bursts
lasting only 10's of drift periods are observed to cause significant transport.



4

. I
(a) "Ion Saturation- Curnt

.10- L-48cm

- !. 2

-. C2 60 50 msec (0 - 60 keV) |

a-,

I kW Ln

:3.0 .2 .4 .6 80.: .2 .4 . .

0- teJ -JUN- 90 !hot = B5

Figure 1. Data from a typical pulsed discharge of the CTX experiment
during the production of an energetic electron belt using microwave
heating. (a) Langmuir probe ion saturation current, (b) hydrogen gas
pressure, (c) reflected microwave power, (d) forward power, (e) probe
fluctuations, (f) X-ray spectra measured every 50 msec.
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Figure 2. A fast-time scale detail of the fluctuations of the ion saturation
current during the heating and during the "afterglow".
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Figure 3. Frequency spect7ograms of rising-tone, multiple-mode drift-
resonant instabilities. The drift-frequency of the energetic electron belt is
approximately 1 MHz, %Lnd multiple-probe measurements show the waves
propagate in the electron drift direction.
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Finally, drift-resonant instabilities lead to transport causing self-stabilization
and continuous, quasi-periodic bursting. This is observation is important. It
implies that the transport-inducing waves also decrease the radial pressure
gradient of the electron belt--but do not destroy electron confinement
altogether. For a dipole magnetic field, the marginally stable pressure profile
scales like p - L- 20/3.

THEORY RESEARCH ON SUBSTORMS

During substormrs, the magnetic configuration of the magnetospheric plasma is
rearranged drastically. The large electromagnetic disturbances and fluxes of energetic
particles can interfere seriously with the performance of spacecrafts. As discussed in our
original proposal (Section 2.1), the ion tearing instability has been considered by many as
a trigger for substormns over the last two decades. We have treated this problem
analytically, extending and questioning earlier results significantly.

We have revisited the problem of collisionless tearing in the earth's magnetotail,
and gone beyond extant theories in two significant ways. Firstly, we have included the Bv
field allowed for a spatially dependent Bn in our equilibrium model. Secondly, we havý
demonstrated that the ion tearing instability, which has been suggested by many as a
possible trigger for substorms, does not exist. We find, instead, that if there is any form of
collisionless tearing,, it must be the electron tearing instability. We have delineated
regimes in which the electron tearing mode can be excited. The conditions that favor the
growth of electron tearing are those in which the Bv field is large and the Bn field is very
small. However, if the Bn field is significant, the electron tearing instability is weak, can
account for the slow growth phase, but not for the rapid current disruption and
dipolarization phase.

The results have significant implications for observations. They demonstrate that
the Bv field must be included in a global model of magnetotail equilibria, and call for
systemnatic studies correlating By and Bn fields with the occurrence of substorm onset.
Our results also question the prevalent wisdom among many that the collisionless tearing
instability can provide a universal trigger for substomis.

For further details, we refer to the attached paper which is to be published in the
Journal of Geophysical Research.
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Global Asymptotic Equilibria and Collisionless Tearing Stability
of Magnetotail Plasmas

XKAOGANG WANG AND A. BHATrACHARJEE

Departnt of Applied Phyai, Columbia Univrsity, New York, New York

Asymptotic tail eqlilbria which am slowly varying in the EFrth-San direction are constructed, including
all three compiocatu of the magnetic field. These equilibria allow for spatial dependencies in Bn and By.
Some of these equilibria am analyzed for ,jibility with respect to collisionless electron teasing modes using a
fluid model which predicts, to within a numerical factor of X112, the gowth rates derived from kinetic theory.
No ion tearing instability is found. The By field is demonstrated to have a destabilizing effect on electron
tearing modes. In the asymptotic equffibfia considered here. electron tearing modes can grow in the presence
of B in those regions where the stabilizing effect of electron bounce is small. Implications for numerical
dmuzon and observations a discussed.

1. hr(MO=OunN

Ever since Ness [1965] reported observationaI evidence for a
neutral sheet in the Earth's magnetotail, the collisionless tearing
instability has claimed much attention as a possible mechanism
for magnetic reconnection in the tail. Coppi et al. [1966]
considered a simple neutral sheet in which oppositely directed
magnetic fields B. = B. (z) face each other across the z = 0 line
(in the x - z plane) and demonstrated that such a sheet is
unstable to the collisionless tearing instability (Furth. 1962;
Laval et al., 19661. (We use here the standard solar
magnetospheric coordinates (x,yaz), with the x axis in the
Earth-Sun direction, the z axis in the south-north direction, mid
the y axis. which defines an ignorable direction, is chosen to
make the coordinate system right-han•ed.) In the simple magnetic
geometry considered by Coppi et al.. the neutral line z = 0 is the
source of the separatrix. Far away from the separatrix. the
plasma obeys the ideal magnetohydrodynamic (MHD) equations.
The departure from ideal MHD behavior occurs in a narrow
region near the separatrix. By considering the energetics of the
instability, Coppi et al. demonstrated that the dominant
contribution to the inverse Landau damping effect comes from
electrons, not ions. Thus this mode came to be known as the
"electron tearing" instability.

We consider now the effect of a large, constant B, field
superimposed on the model of Coppi et al. The presence of By
introduces magnetic shear in the model. The separatrix in the z -
z plane grows out of the z = 0 line. Drake and Lee (1977]
showed that collisionless tearing modes are unstable in this
geometry. (Strictly speaking, the results of Drake and Lee [19771
hold for a low-beta plasma without temperature gradients. as
shown by Cowley et al. (1986]). Since the electrons carry the
perturbed parallel current near the separatrix and provide the
mechanism for reconnection through their small but finite inertia.
this instability too can be classified as electron tearing.

Neither of the two cases discussed above are representative of
the Earth's magnetotail. Much emphasis has been placed in the
literartwe on the two-dimensional model

-A A

B =B tAnhlx + B, 2,(1
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with constant Bo. X, and B. (Schindler. 1974; Galeev and
Zelenyi, 1976; Lenbege and Pellat. 1982; BUchner and Zeknyi,
1987; Bachner et al.. 1991; Pellat et al.. 1991; Kuzneisova and
Zelenyi. 1991]. For nonzero values of B,, , this configuration
has no magnetic separatrix. (For useful discussions of the roie of
separatrices in magnetic reconnection, we refer the reader to
Greene (1988] and Lau and Finn [1990].) The absence of a
separatrix implies that reconnection or tearing (in the sense of
affecting a topological change) cannot really happen for
significant values of B.. It is widely believed that the "ion
tearing" instability can occur in these circumstances, but the
subject remains a matter of lively debate [Schindler. 1974; Ga/eev
and Zelenyi. 1976; Coroniti. 1980; Lembege and Pellat, 1982;
Bachnar and Zelenyi, 1987; Pellat et al., 1991; Kuznetsova and
Zelenyi, 1991]. The analysis given in this paper turns out to
support the point of view recently expressed by PelLar et al.
[1991]. who have questioned the existence of the ion tearing
mode. This point of view has significant implications for
electromagnetic particle simulations of collisionless tearing
(Terasawa. 1981; Hamilton and Eastwood, 1982; Swift, 1983;
Ambrosiano et al., 1986; Swift and Allen, 1987; Pritcheu ea al,
1989; Zwingmann et al. 1990; Pritchett et al., 1991] which can
shed valuable light on this controversial issue.

Recently. we showed that the inclusion of a constant BY field
in the model (1) can qualitatively change its stability properties
(Wang et al.. 1990; hereafter WEBL]. Our model, referred to here
as the three-component model, breaks with the tradition of using
two-component models in theoretical analyses of collisionless
instabilities in the magnetotail. However, just as in the two-
component model, the formation of a magnetic separatrix is
inhibited by the presence of a significant B. field. It is
therefore no; surprisL,6 .hat we found Lha: te electron *xaring
instability has a stabler parameter space and is much harder to
excite in the three-component magnetotail than in a configuration
with B,, = 0. Furthermore, the growth rate of the mode is slow.
consistent with the growth phase. but not the expansion phae of
a substorm.

We now develop an equilibrium model which is more realistic
than considered heretofore in analytical studies of collisionless
tearing. As in WBL., we include the B. field. Failrfield and
others have noted that the By field is a persistent feature of the
magnetotail (Fairfield, 1979; Cattell and Morer. 1982; Li,
1983; McComas et al., 1986; Tsurwaani ei al.. 1984; Sibeckc a al.,
1985]. Voigt and coworkers {Voiga and Hilmer. 1987; Ham and
Voig:, 1992] have shown, based on some analytical and
numerical examples, that the requirements of global ma a
equilibrium of the magnetotail should include B. The poaible
role of the By field in observations of substorm dynamics was
pointed out as early as 1978 by Akasofu and coworkers
[Akasofu et al.. 1978]. From a detailed examination of IMP daa.
Akasofu et al. stressed the need for a three-component analysis of
magnetic fields in the magnetotail during substornns. Though
there are a number of other events reported in the litraaue in
which an enhancement in By and a reduction in B, is observed
prior to the onset of a substorm (Nishida et al.. 1983; Bieber et
al., 1984; Lepping. 1987; Takahashi et al., 1987; Lai et al..
1988; Lope: et al.. 1989]. no systematic studies of substoran
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events with correlated variations in By and B. are available
yet.

One of the main improvements of the present paper over WBL
is the development of asymptotic equilibria with spatial
dependencies in B. and ByI that is, B, = B. (xz) and By =
By (x.z) . These equilibria, and the single-particle motions in
them. are described in section 2. We show that these equilibria
change qualitatively our current understanding of collisionless
instabilities in the magnetotail by introducing new global
features not captured adequately by the model.

.^ A BA
B=B 0 tanh x B +B . (2)

with By and B. constant. In this geometry, the global bounce
period r& for electrons is much shorter than the growth time of
the instability when By - B: . WBL has been criticized for
neglecting the stabilizing effect of this bounce (Banhc er ali.,
1991; Pritchen et al., 1991]. This criticism would be justified
except for the fact that the model (2) is itself globally rather crude
and underestimates severely the bounce period in a stretched
magnetotail. If we must include the effect of electmn baunme the
it is preferable to do so in an equilibrium model which captues
the global features of the magnetotail with greater realism than
equation (2). And that is precisely what we achieve by allowing
for spatially varying B. in the new equilibrium model. We then
show that there are regions where yrh, z I , and the electron
tearing mode grows, with a growth rate y, as predicted by WBL.
Furthermore, when we consider the special case B., = coast in
which Yrb, << I , we find no ion tearing, contrary to the
f'idings of Biichner et al. (1991]. The persistence of slow
electron tearing, and the absence of ion tearing, are recurrent
themes that are explored in detail for both two-component (By =
0) and three-component (By * 0) equilibria in sections 4 and 5.

Though the cl~ttron tearing instability can account for the
growth phase of a substorm. it is not sufficiently rapid to
account for the current disruption and diversion that occurs at the
onset of the expansion phase (Takahashi et al.. 1987; Lai a al.
1988]. Elsewhere MWang et al.. 1991], we have di•,mssed that
nonlinear mode-coupling effects may lead to a significant
enhancement of the linear growth rate. It was implicitly assumed
in that discussion that a linearly unstable mode will grow to
sufficiently large amplitude that it can couple to other unstable
modes. However, that possibility was explored in the context of
the equilibrium represented by (2) which, as discussed here, has
certain limitations. We suggest here that the circumstances in
which collisionless tearing can grow as a robust instability, not
only in the linew regime but also in the nonlinear regime, must
involve reduction of B. to extremely small values. We therefore
point to the possibilities inherent in the three-component
asymptotic equilibria calculated in this paper. An interesting
property of these equilibria is that B. may be reduced to zero at
near-Earth distances when B, is space-dependent. This
possibility was first noted by Hau and Voigt (19921 whose
protales for By were different from ours, and who concluded that
for their class of profiles, the By value required to reduce B. to
zero is much larger than the average value of By in the plasma
sheet. For our class of profiles, we find that the reduction oa B8
to zero occurs for values of By more in accord with observed
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values. When B, vanishes, a separatrix can be formed, and
tearing instabilities can grow. Whether the nonlinear evolution
of these instabilities can actually account for the rapid current
disruption and diversion observed in near-Earth regions remains
an open question.

The layout of this paper is as follows. In section 2 we obtain
some asymptotic tail equilibria, both with and without By. In
section 3 we develop a fluid model, including a generalized
Ohm's law, which allows the treatment of collisionless tearing
modes, and benchmark the predictions of this model with known
results from kinetic theory. In section 4 we use the energy
integral derived from our fluid model to analyze the stability of
the two-dimensional magnetotail without B, and constant B,.
We find that the ion tearing mode does not occur, and the only
possible instability, under certain conditions, is an electron
tearing mode. In section 5 it is shown that the inclusion of B.
and a spatially varying B. can further destabilize the electron
tearing instability. We conclude in section 6 with a summwy of
our results and their implications for observations.

2. Som AsYwr c EQ•uLitR

2.1. Two.Component Equilibria
We begin by considering some asymptotic two-component

equilibria. i.e.. equilibria for which By = 0. Assuming that the y
coordinate is ignorable, the magnetic field B may be written as

B= vv Y. (3)

where W is a flux function. In equilibrium. for a charged particle
of type a. the energy Ha and the momentum P0, are conserved.
Assuming that there is no equilibrium electrostatic field, these
constants are

1 2
a 2 a' (4)

Pa =m v + W/
a, a v•c, q0 /Ic, (5)

where m, is the mass of the charge particle of type a . q,. its
charge, and c is the speed of light. An equilibrium distribution
function can be written as

f,= f. (Ha. P,.

= n01 -( / exp 12L (n , (6)

where V0 is the drift velocity. Ta is the temperature (in energy
units) for particles of type a ( = e, i for a hydrogen plasma), and
no is the average number density of elecuons and protons. The
temperature T0 is taken to be a constant, From the relation

% = Jdvjf.. (7)

and the requirement of quasi-neutrality. n, = ni, we obtain the
condition V, I/7, = - VET,. The y component of Ampere's
law gives
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47C

B'-.

where

2c (Ti + T,)

"eBo (Vy (9)

defnes a characteristic equilibrium length scale, and the constant
B0 is determined by the relation

B02/Sx = no (T, + T) (10)

B0 is a measure of the lobe mapetic field. We scale the variables
xAX -+ x. W oIB•X -+ W . pI(Bo2/47c) -ý p. BIB0 -+ Ba. nd
introduce a small, positive parameter F- - a/ax << a/o- 1 . In
this approximation. a large class of equilibrium solutions of (8)
is given by [Birn et al.. 1975; Birn, 1979; Zwingmann and
Schindler. 1980; Lenbege and Pellat, 1982; Zwingmarm, 1983]

w = -log (cosh [zfcx)]/fAcx)) , (11)

where ,ex) is a slowly varying function of x. It follows that

B =- - =fer) tanh [E X)] , (12)
az

B- a 13. T = - zf'(-X) tanh[#4(eX)]} (13)
Z RX I Ilx

where prime denotes differentiation with respect to the argument.
Following Lembege and Pellat (19821. we take lEx) = exp (Ex)
(x < 0). As a first approximation. almost all analytical studies
replace (12) and (13) with

B = tanhz , (14)

B = E. (15)

However, this is valid only in the region IxI• 1., IzI--+ 0. It
cannot be assumed that this approximation holds for large x
close to the z = 0 line. for the equilibrium pressure balance
condition implies that apfax = - e which. in tun. gives p = Po -
ex. with Po constanL This means that the pressure increases
with z , which is urtealistic for the distant tail. A better
approximation for B,, than (15) is

B = E(I-ztanhz). (16)

However, (16) does not represent realistically the x dependence
of 8, (x~z) which should tend to zero as Ixi-- -. It is possible
to improve on (16) by taking

flEx) = exp ([x/(l -ex)J (x < 0). (17)
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We recall that the distance x is meanred in units of . - 1 RE.
For specificity, we take E = 01, and define L0 s -I = 10. The
scale L0 (-1ORE) enables us to define three separate regions:
1. Near-Earth region. IlxI << L

In this region. using (17) in (12) and (13). we get

B. = tanh , (18)

B = ((1-ztanhz). (19)

2. Middle region. Ixi -
In this region, since ex - 1, we get

Itanh 1/2Z) ,
Bz tmnh(ce ) (20)

S I2 z tanh IB 4 [1-e ti (a :)]. (21)
M4

If we define B' . e-/21B, r' w e*n-z and E', .e-1/2 4, then
(20) and (21) become

B tanh ', (22)

B' e (i - z' tar' h z'), (23)

which is the same as (18) and (19). In other words, the middle
region has the same structure as the new-Earth region. except that
the magnetic field in it is somewhat weaker and the current sheet
is somewhat wider.
3. Distant-tail region. IxI >> Lo

In the distant-tail region. taking the linit xILo -- - ", we get

B. =)(e-.z) (24)

B = 0. (25)

Equations (24) and (25) describe essentially the configuration
first considered by Coppi et al. [1966]. who found electron
tearing modes to be unstable. We caution that though the
qualitative features of the magnetic field as described by (24)
and (25) are reasonable, the far distaant-tail region is outside the
strict domain of validity of the asymptotic solution (13). Here
we do not pursue this matter further, for the main focus of this
paper is on the investigation of collisionless tearing modes in the
near-Earth and middle regions. We also note that the new-Earth
configuration described above is not totally realistic for Ixl r.
5R, because at these distances, the Earth's dipole field, not
included in the model, plays a dominant role. Matching to the
dipole field can be carried out. in principle., but is not germane to r_
our considerations here. Figure 1 shows a plot of our asymptotic
two-dimeneiional model with the origin set (arbitrarily) at x -

5R, z =0.
We now discuss some features of the single-particle orbits.

For a particle of mass m, and charge q, gyrating in magnetic
field B . the Larinor frequency is wo1, = qB/mac , and the
typical Larrnor radius is pec = va/aoa , where v,, N
(2T,/m0 ;':" is Lhe thermal velocity. Using typical tail
parameters (see. for instance, Lui 119871), we get pci- (0.5 -
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l)RE. In both regions I ard 2. p.2 >1. Pp, << I (scaled by X.).
Hence electrons way be treated in the guiding-center
approximation, but the ions are essentially unmagnetized.
Because of the z dependence of B8, (x.z). the field lines are
more stretched as z increases than in the case of constant B.
(see Figure 1.). In the Appendix, we show that this has the
consequence that the average bounce period of electrons in both
regions 2 and 3 can be substantially larger than the bounce
period with constant B 3.

It is interesting to note that the large sepuation in the
magnitude of the Lamor frequency m, and the average bounce
frequency cob. n 27tbd-1 in our asymptotic equilibria (in those
regions where B. is weak) diminishes the possibility of low-
order resonmnces between the aro and bounce frequencies for
most particles, and the chaos that can result forn such resonaces
[Chen and PaLmtdesso, 1986; Bkchner and Zelenyi, 1987].
Hence, for equilibria with spatially varying B., we will not
concern ourselves here with intrinsic stochastic diffusion as a
possible mechanism for the restoration of ion tearing. As to
whether stochastic diffusion cam destabilize the ion temaing if B.
is constant has been the subject of debate recently [Pella a at.,
1991; Kwnetsova and Zekenyi, 1991] and is an issue we shall
address in section 4.

2.2. Three-Componew Equilibria
We now consider equilibria which are symmetric in y but

with all three components of the magnetic field nonzero. The
magnetic field B is represented as

B = B• Vv x.. (26)

The condition of magnetostatic equilibrium gives the Grad-
Shafranov equation [Voigt and Hilmer, 1987; Paranicas and
Bhanacharjee. 1989; Hau and Voigi, 1992]

+ +X 0, (27)

where p - P() and B, = B, (1W) are two free functions. If we
set By -0 and take p = exp (2W) . we recover (8) (in
dimensionless variables). We note that (8) also holds for B. =
const. in which case a class of asymptotic solutions can be again
const, ucted using (11). The B, and B, components for this
class of solutions has already been given in section 2.1.

We now consider the effect of a nonzero dBy 21dV on the
solution (11). Since W is small and negative nea r -= 0 .we
make the expansion

2 2

B 2 bo2 -2bI + (28)

when b0 aid bI are positive constants. If we order b0 - b, -
IV - thennear z=0 (1l)canbemodifiedas

W = -log (cosh [rftx)]Iflzx)) + bIx 2/2, (29)

with ftx) specified by (17). This yields B. £ + b1x
which implies that B,. vanishes on the z = 0 plane at x = -
b1lc . Hence an X-point appears on the z = 0 line (in the z - z
plane) at near-Earth distances (5 RE <Ix I S10 RE). That the
spatial dependence of By in a magnezostatic equilibrium can
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lead to the reduction of B. to zero on the z = 0 plane has been
recognized by Hau and VoiSt [1992). However, for their clas
of equilibrium profiles, they find that the By required to reduce
B. to zero is much larger than the observed average By in the
plasma sheet. For our class of pressure and By profile this
limitation is overcome because the average values of both B.
and B, are of the same order.

The particle orbits and drift motions in the presence of By has
been considered by WBL and will not be repeated here. Simple
considerations of particle orbits near r = 0 . where (2) holds.
shows that the main stabilizing effect of B. is to remove
electrons from the z = 0 plane where the separamix tends I form
in the absence of B.. The addition of the B, field provides the
electrons with another guided channel for motion near the z - 0
plane. Then. as noted by WBL. the growth of the electron
tearing instability depends on the competing effects of By and
B,. As far as the effect of electron botmce is concerned, we show
in the Appendix that the bounce period in the stretched
magnetotail increses due to the x dependence of B ; hence the
condition yrb. z 1 is satisfied in the middle region. This, in
run, implies that the stabilizing effect of the electron bounce is
weakened, and that the electron tearing mode can grow in the
linear regime not only for By >> B, but also for By - B, near the
z = 0 plane. However. we repeat for emphasis that in the lanter
case, the growth rawe is small, and the mode is likely to saturate
nonlinearly at a low amplitude.

In this section we have made use of dimensionless variables in
order to keep the notation simple. In the remainder of the paper.
we shall return to using the primitive physical variables.

3. EF.%aRoY L cr~AL

In WBL. the subility of the plasma sheet was analyzed by
asymptotic matching of the normal mode equations in the inner
region, where finite particle inertia provides the reconnection
mechanism, with the equations in the outer region. governed by
ideal MHD. The technical details of such an approach ore
somewhat different from those involved in the Lyapunov
functional method (developed by Laval et at. (1966]) which relies
on the existence of an energy integral. We review, at t.in, the
stability criteria that foWow from the energy integral. From the
linearized Maxwell's equations, it follows that

=d x f - L ( --4n E ') 2 J

da--EXBI, (30)

where all perturbed quantities are designated by the subscript I.
We assume that the boundary conditions on the surface bounding
the plasma volumne ensure that the surface term vanishes. Then, it
can be shown [Laval t al., 1966] that

dxJ1.E = -fdx 1 F, [-2fdvv,

+ Jdvf12 / f' ]. (31)
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where

f10  fic 1411. (32)

From (30) and (31). it follows that

I se = 0. (33)57

wheme

a2 fdx [ 2 + E }

f d v , -, + f 1,+ 1', 7,o:2 '1]. (34)

The energy integral 82E is quadrati form. If 62E is

positive-definite for all nontrivial permissible perturbations.
then the system is stable (K-usgaJ and Obwena. 1958; Lavalet
81.. 1966]. In other words, a sufficient condition for stability is

82 Z0. (35)

Fu.thermore. for a Maxwellian distribu•ion. since. af/. /a =

we get

T. fdvl -2 Tct fd0. (36)
- 2 a- l a al . 2 fa

Equation (36) implies that for a Maxwellian distribution a
sufficient condition for stability is

* 52W. fdx[-L [B~+~

-i a dv ,a ] ? 0. (37)
Since collisionless tearing modes have low frequency, the
electrical energy E 1

2/8X is much smaller than the magnetic
energy B1

2 I8n. and can be neglected. The sufficient condition
(37) can be rewritten as

aW fd [I Sx-2 c dv O . (38)

One of the dificulties presented by the energy integal P is
that the physical interpretation of some terms is not transparent.
We take for instance, the last term on the right-hand-side of (34).
Lembege and Pellxa (1982) showed, by using a Schwartz
inequality, that the term has a lower bound which can be
attributed to the compressibility of the electron fluid. This
interpretation has been invoked repeatedly in the literature, but it
is worth noting that it was meant to hold for the lower bound, and
not the term itself. In fact. it is clear that there is more to the
original term than electron compressibility. The function 52E
represents the second variation of the total energy E which is a
sum of the electromagnetic field energy and the kinetic energy of
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the fluid. Since the perturbed kinetic energy of the fluid is
always positive definite, it must be associated with a manifestly
positive definite term in 62E. Thus it would seem that dw last
term in (34) should involve the perturbed kinetic energy of the
fluid plasma, but this is not obvious. (The physical
in•erpretation of the kinetic terms is much more transparent in the
energy principle of Kr/skal and Oberman (19581 for a guiding-
center plasma, but this is not the model tmderlying the fimtrcol
(34) which has been derived from the full Vlasov equationm)

In view of the interpretational difficulties of a fully kinetic
treatment, we propose a different approach for the study of
collisionless tearing modes in the magnetotail. This approach
uses fluid equations, and the mechanism for reconnection is
provided by finite particle inertia in the generalized Ohm's law.
That this is a reasonable model for collisionless tearing modes
was suggested by Furth [1962, 1964]. The point of view we
adopt here is that the energetics of collisionless waring modes is
describable within a fluid model by using a generalized Ohmt's
law. The wave.particle resonance condition (which is a kinetic
effect) is included in such a model by simply equating the growth
rate y to kv,, where k is the wave number and v,, the electron
thermal speed. (For sheared configurations. k is replaced by k g.
the component of k parallel to the magnetic field.) This ad hoc
resonance condition misses the detailed structure of the particle
distribution functions. However, we shall demonstrate tW the
growth rate calculated from the model equations agrees, except
for an overall multiplicative factor of x112, with the results of a
fully kinetic treatment. One of the advantages of the fluid model
is that the energetics of the instability is much easier to interpret
physically. This will enable us to formulate a stability condition
which is both necessaiy and sufficienL

The linearized fluid equations are

au " = + c -vP (39)
PCatVC c

-+ V.(pu) = 0, (40)

uxB m aJ
E4 + - = t' (41)

1 c ~ne2at

VxE = - 1 (42)

VxB 1 =± Jt. (43)

p1  ( n•,+ Td). (44)

where p, is the perturbed mass density, u is the perturbed fluid
velocity. p, is the perturbed pressure, n, is the perturbed
number density (n, = nl = nil by quasi-neutrality). and the
unsubscripted variables represent equilibrium quantities. We
note that the generalized Ohm's law (41) has a term proportional
to the electron mass, but none proportional to the ion mass. This
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can be readily seen by considering the more general form (see. for
instance, KraU and Trivelpiece [1986])

at (~me MS) IE1 - -j

which reduces in the limit m/mi<< I to the form (41). Apart
from terms involving finite particle inertia. the generalized Ohm's
law contains other terms such as the Hall term. the electron
pressure gradient term, as well as terms involving the anisotopic
stress tensor. It can be shown that the first two do not
qualitatively change our results for the class of equilibria
considered here. However. anisotropies in the stress tensor.
which are an additional source of free energy, may alter some of
our conclusions. We do not consider pressure aisotropies here
because it is questionable whether an instability that is primarily
driven by such a source of free energy should be classified as a
tearing mode.

We now use (39) - (44) to calculate the different terms in (30)
(neglecting. of coume, the term E, 2/Sx which is much smaller
than the term B1

2/8n). We get
J E" = J1 x B'u a (+ 2eL J 2). (45)

The first term on the right-hand-side of (45) can be calculated

from the momentum equation (39) which gives

J, x B - u a 1 1

cc
÷ V'(ptu) -p 1 V-~u ÷ u." 1  (46)

Writing
A A

B, = VyI xy Y Byly, (47)

we get

Jx B (JV4

L V -u +-W-Lu.Vj. (48)
C C

Since ait/at +u .Vw=0. and J J(i) ,we obtain

U. - V1 () c I _ (49)_
at ( 47)t= at VI'(z,,x) (49)

where the prime in W'(:.rx) indicates differentiation with
respect to z. Defining F w W'(z,.tx) and substituting (46) -
(49) in (45), we get
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÷ v.(•lu-•iV u.(50)

where 10,2 = 4,n•e /m, is the plasma frequency, and

P1 = P - P'(• W 1 -J P /c. (SI)

Equation (30) cm then be cast in the form.

&2C e+ da E- ,x B,+pjUi =0, (52)

where
82 5 E 62Wf + 82We + K+ 8Q M 82U+8 2 K+6 2Q. (53)

Here

2

(B (54)

is the free energy of the magnetic field,

a I8uW -f Adi V-u. (55)

can be attributed to plasma compression. and

52Q J( 2no) j . (56)

is the "dissipation" due to finite electron inertia. Note that the
fluid kinetic energy 82K R Jdx (1/2)p u2. and the dissipation
82 Q are positive definite quantities. If the boundary in (52) is
chosen such that the surface term vanishes, then a sufficient
condition for stability is

U 2W + 
2W C 2 0. (57)

In order to develop confidence in the fluid model, we now
benchmark it with standard results from kinetic theory. For
simplicity, we consider an incompressible fluid for which &2W,
= 0. Then. there are three terms in the energy integral (53) among
which 82K is the kinetic energy and always positive definite. It
is clear that a tearing instability can occur if and only if there is
magnetic free energy available, i.e., &2Wi< 0, and there exists
simultaneously, a mechanism for dissipation causing 62Q
(which is always positive definite).

Let us first consider the equilibriun configuration (2) with B.
= 0. For this case the growth rate of the collisionless tearing
instability is known analytically. The mathematical problem
divides itself neatly into two regions: the outer region, away
from z = O, where the plasma is in quasistatic equilibrium. and
the inner region near z = 0 where inertial and dissipative effects
are importanL We rewrite (54) in the form

5'V I+ Idx1 +~ F' -2] (58)

where r= y(:' ) coskx. F a tanh z1A and prime denotes
derivative with respect to z . In the outer region, neglecting
inertia and dissipation. we get

V" -k•-, - (P'/IF) -= 0. (59)
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Furth (1963] observed that if the first term in the integrand of
(58) is integrated by parts and (59) is used, 82WI reduces to

z=0 +

f 16R r=O -

a - ' Z2(0). (60)
"16n

where fdx = ao, Id: ay = fdrdy and the parmeter Ao'is
defined by the relation.

0  W(O+)- iI(O-)ý(O- (61)
y(o)

(In obtaining (60), we have used the boundary conditions
(- -) - 7(+ -) = 0 .) For the equilibrium (2) with B. = 0, we

get (see., for insunce. WBL)

0 2. -2 (62)

On the interface between the inner and outer regions, the
Poynting flux is

da . E x B

C A
47c fdxdy J dxdy z .E 1 xB

= 4 ao -(20) 2e (63)
16n atoter

Thus the magnetic free energy in the outer region is spent as
dissipation and kinetic energy in the inner region.

To determine the dissipation in the inner region, we use the
generalized Ohm's law.

I a-T M, a7, (64)

where JA, - 7Y cos t. Equation (64) gives

- _ -k jI ;, (65)Y 4 n• 0

where k.0 u aosc. The dissipation caused by electron inertia in
the inner region is

k =+d,

22 dz

Sat 16x f
z =--d,
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2

= a 8 d w(0). (66)

where d, is the width of the tearing layer.
Requiring that the system energy be equal to its equilibrium

value [Kruskal and Obermat, 1958], we get

82 = exW1  + 2K4+ Q = 0. (67)

For the electron tearing instability, the fluid kineti energy 62K.
which is dominantly due to ions. is much smaller than the electron
dissipation 5-Q. Hence, from the relation

82W! + S'Q = 0. (68)

we obtain the tearing layer width [Drake and Lee, 1977]

Ao

d = d (k) (69)
2ko

The growth rate of the instability can be determined by using
the wave-particle resonance condition. In the case By = 0 this
condition is

y = k v. (70)

where k is determined from (62) by the requirement 4o" > 0
(82 Wf < 0). From (62) and (70) we obtain

Vi2 (1 -k 2X2), 
(71)

k 2k0 X 2d

(I (- kY). (72)

In writing (72) we have made use of the equilibrium relation (10).
The growth rate (72) is larger by Lhz factor X1i2 than the result
obtained from kinetic theory by Laval et al. (1966].

In the case B. * 0 the resonance condition (70) is modifiedto

y = km v. (73)

where k;, = k d, A. Equations (62) and (73) then yield

k'v1. Ao

S- 2 .'1 (74)
2k0 X

which is also larger by the factor n112 than the result of Drake
and Lee [1977].

Equations (71) and (74) demonstrate that the fluid model is
reliable as a predictor of the parametric dependencies and the
order of magnitude of the growth rate of collisionless tearing
modes when B, = 0 , both with and without B,. The numerical
factor missed by the model has to do with the precise details of
the electron distribution function.

In the last paragraph, we have used the term "collisionless
tearing" instead of "electron tearing." though the latter name is
commonly used. It has been shown elsewhere (for the case B, *
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0) that the full ion dynamics gives small logarithmic corrections
to (74) (WBL. Appendix A]. In other words, the result (74)
already includes the ion response. and there is no ion tearing
branch of the dispersion equation. That being so, it is redundant
to call this tearing instability electron Waring because in this case
there is no other form of tearing.

4. EFFECr OF CONSTANT B,

So far, we have benchmarked the fluid model by reproducing
known results from kinetic theory for equilibria with B. = 0.
We presume that a fluid model which has been demnonsturaed to be
reliable for B.= 0 will work for equilibria with B.* 0.
representative of the Earth's magnetotail. As discussed in WBL,
what will change in the presence of a nonzero B. are the particle
orbits. We consider, at first, the case B, = constant (equation
(15)) which has engendered considerable controversy in the
literature.

In the presence of B. the perturbed current has a component
JIt in the z direction which generates a perturbed magnetic
field component BI.. In W'BL. this component has been
calculated by writing B1 = V x AI, using the Coulomb gauge V
- AI = 0 and the approximation a/Ix << a/z for perturbed
quantities. Here we denote NI =Aly, XmA 1 ,. and wrie

2 12 2 (5
B, a VI +• ) + Bl (75)

Substituting (75) in (54). we have

B8w = , dx ,' + T rv (76)

We take , = jj(z,t) cos kx . In the outer region. we have
[WEL, Appendix B]

j2- X = o. (77)

which has a solution of the form e-"411. This solution has a jump
continuity in its logarithmic derivative, specified by

A2 - i = -2k. (78)

In~the Coulomb gauge, we can now write B1.2 = k-2 all - k2

x) . Then, the contribution of the last trmn in the integrand of
(76) is - (a.Y /16n) 62' j2(0) . This has a clear physical
interpretation: B. reduces the magnetic free energy available to
the tearing instability and hence has a stabizing effect.

The computaton of the first three terms in the integrand of (76)
is somewhat more involved. One of the complications inuoduce
by B. is that it introduces a phase shift tha. in effect, couples
the cosine solution in x, i.e., ', (z,t) cos kx with the sine
solutions in x. i.e., (rj) sin kx. In the outer region equation.

substitUtIng
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= ..... cos•= . , (sO)

we obtain

h' •.•'•- r:• - "" "

h ( k "v +k - z v- . (3)._. z k.

where h' a X-I znz 1 X .. FoUowing the meod outind
ApMendix B of WBL we get

-her theu~a ip -. (8) ,n .,(8) crepnsto >0,b
,r- -(0

,h ' /c = A I O V •, • • • ( •

W e =o w u s e ( 8 1) - ( 8 1 1 ¢'0 1• c •ul t th 6 = :=ire e "- in F ly[

Thes areh'O() ~

16C C 9

Z +~K y x - () (84)

• T•

an (82), we ze".

- (0) _ -

where V Oe (0) R ;CZ0. Sim i(m ad (Mare

both soludone o (85) and obey t of 36 byp zs y donwig )

the list two tcm of (37) czncel e.t odia exacly. Defiin
.(,2). weIzeo

•0) ÷ : (0)

and using (87), we get

-J a.,- (,9.- i J( )

/ z l I I m u
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We now evaluate 82 WC . which is due to plasma
compressibility. If B, is large and constant, then the inequality
Trb << I is satisfied. Under these conditions the elecutons have
a stabilizing compressional contribution due to the bouncing
motion between mirror points along a field line. However, the
effect of ion compressibility, which comes into play because of
the quasi-neutrality constraint nl = nil , is larger than the effect
of electron compressibility. The magnetic free energy 62W, is
generally not large enough to provide energy for compressing the
ions, and the mode is stabilized urless the wavelength is very
large. In order to demonstrate this, we calculate P2WC from the
fluid equations. From the linearized continuity equation. we get

V-u = -I an -u- Vvud-- knn. (90)

Using the equilibrium relation (7). and defining

dn
n = n - /l' (91)

we rewrite (90) in the form

~u = -n I a;_2 + u-VW . (92)

Averaging (92) over an electron bounce period, we have

n u =- >B-x (f <w> + B.< l>), (93)

where < > indicates an average over the rapid bounce motion of
the electrons. Since the bounce motion involves dominantly the
outer region. we neglect the electron inertia term in averaging
Ohm's law (41). We then obtain

< E, > 0- W v: >B (94)

Using (44), (51), (93), and (94), we get

~ý V- > _2 _ .(8+T)< 2>
-2B 2 atW2

24

2 1 2

16nBO2 at 2l(5

Hereafter, to simplify notation, we shall drop the averaging sign.
Equation (95) then gives

2 =f dx k2Bo2 -2
SJ222 _L_ (96)

Equation (96) can be rewritten as

82W a1 . k2Bo2

C 16n 2B 2

where
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Z= dz exp(-2kz) [ 1 - tanh z/X] (98)

Equation (97) agrees with (91) of GaLeev [1984] (except for the
area term a,, which has been taken to be unity by Galeev
without loss of generality). The constant to is estimated by
Galeev from physical arguments; here, we evaluate (98)
asymptoticaUy to obtain

k0 = Ilk (99)

Note that an upper bound for 6
2W/ is obtained by setting

(0) equal to zero. Hence. from (57). a sufficient condition for
stability is

-A 0 + V 2 ;> 0. (100)

which for << I , reduces to

e/ a 2. (101)

Equation (101) is close to the sufficient condition for stability
kXlE a 4hr . derived by Lembege and Pellat [1982]. The
inequality (101) implies that all wavelengths smaller than xx/E
are stable. For example, if we take •, - RE. E - 0.1 . we find
that wavelengths smaller than 30 RE are stable. Of course, this
does not necessarily mean that wavelengths larger than nXA are
unstable because violation of (101) does not imply instability. If
one proceeds with the hypothesis that instability is possible for
WE < 2 , it can be shown, following Lembege and PeWat (19821.
that a long-wavelength ion tearing mode is impossible. We refer
the reader to the work of Lembege and Pellat [1982] for further
details.

Attempts have been made to restore the ion tearing inuab'lity
by invoking pitch-angle diffusion (Coroniti, 1980; Galeev, 1984
and references therein] or intrinsic chaotic diffusion (Bachne,' et
al.. 1987]. We now demonstrate that even in the presence of
these effects, the most that we can get is some form of weak
electron tearing and that there is no ion tearing. At first we note
that occasionally, a source of some confusion in the literature has
been the misleading premise that it is electron compressibility
that stabilizes tearing in the presence of a constant B 4. From
this premise follows the argument that if the electrons are
removed by pitch angle scattering or intrinsic stochastic
diffusion, then it is possible to neglect the electrons while the
ions tear field-lines. Our fluid model clearly indicates that
electron compressibility is less of a factor than ion
compressibility for conditions typical of the magnetotail.
Inspection of (95) shows that both ions and electrons contribue
to 82W. but the electron contribution to 82 W. may be
apportioned as IT, /(Tis T] 6 2 W, , whereas the ion
contribution is (T,(T,÷- ",] 62WC. Since T, - 5T, is typical in
the magnetotail. this apportionment indicates that the dominant
contribution to fluid compressibility comes from ions.

In order to pinpoint the differences between our results mad
others in the literature, we refer the reader to the review by
Galetv (1984). Galeev's equation (91) gives the energy spent
for plasma compression. in agreement with our 62W -.

Subsequently, in the presence of pitch angle scattenng. Galeev
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attributes a compressional term similar to 62 WC entirely to
electrons (see his equation (96)). and yet another contribution
due to ions (his equation (97)). Our fluid model yields the
compressional energy,

6 2w, = a., k 2 o ý2 (0). (102)S 16a 2 B. 2  * 2,,

where v,ff is the bounce-averaged effective collision frquency.
Note that when vy = 0, (102) reduces to (97). as it shoukL (If
v.ff >> y, then the factor 71(y + v.Z) can be approximated by
y/veff). Thus S2 WC (our equation (102)) includes the
compressional effect due to both electrons and ions, and that
there is no separate ion contribution as Galeev's equation (97)
suggests. For large veff (or equivalently, large stochastic
diffusion), the stabilizing effect of 62 W, can be strongly
reduced. Under these conditions, it is possible, in principle, to
recover an electron tearing instability, but there is no ion tearing.
This conclusion supports the recent results of Pellat et al. [1991]
who question the very existence of ion tearing, but contradicts
the findings of Kiaznetsova and Zelenyi [19911.

In view of the controversy in analytical theories, much can be
learned from particle simulations. Unfortunately. electromagnetic
particle simulations of collisionless tearing inevitably involve
making compromising choices on such parameters as m,/mj, the
system size (which determines the range of unstable
wavelengths), and the spatial grid size. We have cited several
such simulations earlier, and it is fair to say that in all of themn an
instability with the theoretically predicted growth rate and
characteristics of ion tearing has been very difficult to find.
Since we believe that both electron and ion dynamics (which are
tied by the constraint of quasi-neutrality) should be retained in
simulations of collisionless tearing, we first comment on reported
results from two-species simulations that include a B4 field.
Swift and Allen [1987, P.10.015] report that their previous
unpublished work showed "no evidence of the development of
any type of instability." They also attribute correctly the
observed stability to ion compressibility. Zwingmann et al.
[1990] report results mostly for the mass ratio m,/mj = 1, with
some discussion of a case with m,/mj = 1/10. As they note, the
case m4 mi = I cannot distinguish between electron and ion
tearing. (If an ion tearing mode exists, its growth rate should be
much larger than the electron tearing growth rate when the mass
ratio is realistic.) Their results show significant discrepancies
with theoretical predictions (Schindler, 1974]. In particular, the
growth rate observed in the simulation is up to in order of
magnitude less than predicted by theory. We attribute the
growth of the instability in these simulations for small values of
B. to electron tearing, not ion tearing. This hypothesis cam be
tested, of course, by a study which computes the growth rawe as a
function of m/mi .

Apart from two-species simulations, there are one-species
simulations of the ion tearing mode in which the electrons are
involved only as a static charge-neutralizing background
(Terasawa, 1981; Hamilton and Eastwood, 1982; Swift. 1983;
Ambrosiano and Lee. 1983; Pritchett et al., 1991]. It is clear
from our previous discussion that these simulations canmot
realistically simulate electron tearing modes. Furthermore, any
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inference on the viability of the ion tearing mode from these
simulations is questionable because electron dynamics has been
eliminated arbitrarily for reasons of computational convenience.

We conclude this section with the remark that unless the B.
field is very small, field lines cannot reconnect to form islands in
the linear regime. The striking contrast between configurations
with B. = 0 which tear easily to form magnetic islands and
configurations in which significant values of B. inhibit tearing
is illustrated well by Figures 6.2.4 and 6.2.9 in Galeev's review
paper. In Figure 6.2.4, islands develop at the separatrix where
collisionless reconnection provides accessibility to a state of
lower energy. In Figure 6.1.9. there is no well-defined separatr'x,
and the system sustains global compressional oscillations.

5. EFFrs OF by AkM SPATIALLY VARYING B,.

WBL considered the effect of a constant By field
superimposed on the two-dimensional configuration of section 4.
Their analysis of the electron tearing mode dealt with the inner
region dynamics using kinetic theory, but global aspects of the
dynamics such as the bounce motion was neglected. The aim of
the present effort is to explore the consequences of these global
effects in the context of the improved asymptotic equilibria
developed in section 2.

At fimrst, we consider equilibria in which By is constant, and
the spatial dependencies of B. and B,. are described in region
1 (near-Earth) by (18) and (19). in region 2 (middle) by (20) and
(21). and in region 3 (distant-tail) by (22) and (23), respectively.
As noted in section 2, the spatial structure of B, in the near-
Earth and middle regions are similar, except that the magnetic
field is weaker and the current sheet is wider in the middle
region. It is shown in Appendix A that the bounce period rb in
region 2 is larger by an order of magnitude than "b in region 1.
In region 3. since B,. is vanishingly small, 'Cb, is extremely
large.

Certain conditions must be fulfilled for the electron tearing
instability to occur. First. there must be magnetic free energy
available to drive the instability; i.e.. we must have 62WV1< 0.
where 82W/ is given by (89). This means that the stability
parameter a, must be positive. In standard analyses of
collisionless stability of the tail (see, for instance, Gaoev (1984.
and references therein]). AT' is replaced by A'-. Note that this
overestimates the range of unstable wavelengths because A2'
(equation (78)) is negative.

Second, the stabilizing compressional energy 62WC due to the
bounce motion of electrons should not exceed the destabilizing
term &2W . We show, a posteriori, that in region 1. y•,, << I
but in regions 2 and 3, we have Trb, 2 1 and ycb, >> 1
respectively. The compressional stabilization is thus significant
in region 1 but not so in regions 2 and 3.

In regions 2 and 3. the effect of the electron bounce can be
neglected. We are then back in the framework of WBL who
obtained the dispersion equation for electron tearing modes
neglecting electron bounce. From a kinetic analysis, carried out
in Appendix B. we obtain the complex frequency (o = o.0 iy.
where
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kvie so
a-0 •-A., (103)

Y = T 2 (104)

in region 2. Here = k V, SO is a constant which can be
shown to have a numerical value of approximately 10 under
typical conditions, L, = X(B, 2 + B, 2)1/2IBo and A= 8&l(kao0
X3) << A;. For compariM. we recall that if B.,=-0. the real and
imaginary parts of the complex growth rate are. respectively
[Drake and Lee, 1977]. given by

0, - 0o,. (105)

._ T 2- A '. (106)
. 2ko L,

In (103) and (104). all equilibrium quantities are evaluated at z =
0. In particular, since j(0) / j(0) = B9Bn(z = 0). we can write

2 2
• a2A0 ,+cE A2 "

Av= 2 2 '(107)

Ot + E

where a a By/B 0 . If x - e . a necessary condition for
instability is

A= AO'+ A2 > 0, (108)

which gives

kX < I / -I . (109)

Equation (109) implies that wavelengths larger than Nr2 .. (=
9 RE for X = I RE) may be unstable. In order for the instability
to grow. however, it must also satisfy the condition yr,, >_ 1. A
viable class of instabilities is obtained for ke Z 3% ; these do
obey the condition Yr1 , Z I for SO = 10, v,. = 2)Js.

If By << B,. i.e.. >> e a, the ondition A,' > 0 for instability
reduces to kX < ale . As shown by WBL. this condition
predicts unstable wavelengths which are much too large to
account for reconnection events in the near-Earth and middle
regions.

We note that (104) and (106) have been obtained from a
kinetic analysis, and except for a factor of ni/2 , can also be
obtained from the fluid model The fluid analog of (106) is (74).
derived in section 3. The fluid analog of (104) has been derived
in Appendix B, and is given by

2 a 0r A (110)
2k 2L,

As before, the results from the fluid and kinetic calculations differ
by a multiplicative factor of n1/2.

In regions where yrj, - I , the destabilizing effect of By may
be understood as follows. If B, = 0, Galeev (1984] points out
that the energy spent for plasma compression is the work done
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by the perturbed plasma current generated by the perturbed
pressure gradient.

If By *O. (111) changes to

ax a - -YB , - I. B112)

Now. if yrb, << 1. then the bounce average of (112) should be
taken, and the second term on the right-hand side of (112)
averages to zero. On the other hand, if , l .or yrb,, >> 1.
then there is no bounce average to be taken, and the second term
tends to reduce the first term because 7 1 /7z, - B, IBz.

There is some evidence in the numerical simulations of Swift
and Allen [1987] that the presence of B, enhances the tearing
activity near z = 0 compared with the case B, = 0. (See their
section 4.3.) Clearly. there is a need for two-species simulations
including By using either asymptotic equilibria of the kind
developed in this paper. or numerical solutions of the equilibrium
Grad-Shafranov equation (cf. Voigt and Hilmber, 1987].

Finally, we comment on equilibria with spatially varying B.,
discussed in section 2.2. There we show that, for a class of
pressure profiles, the spatial variation of By can cause the
formation of an X point on the z = 0 line. We show. furthermore.
that this can occur at near-Earth distances for average values of
By and B. characteristic of the plasma sheet. The configuration
thus formed is likely to be highly magnetically stressed. Under
such conditions, rapid reconnection may occur at the separatrix
in both the linear and nonlinear regimes. We conjecture that the
collisionless reconnection rate in this geometry is likely to be
much larger than the rates derived in this paper. Such a geometry
calls for a separate treatment, and the exploration of that
possibility is left to future work.

6. CoNc.usmO•s

This paper makes two main contributions to the problem of
collisionless tearing modes in the Earth's magnetotail. The first
involves the development of asymptotic magnetotail equilibria
including all three components of the magnetic field, with realism
in the modeling of the normal component of the magnetic field, B.
(xz). The second involves the development of a fluid model that
is physically transparent and accurate in reproducing the
parametric dependencies of the growth rates of collisionless
tearing modes calculated from kinetic theory.

One of the significant conclusions of this paper is that the ion
tearing mode. which has been the subject of considerable research
and controversy over the last two decades, does not occur. This
is true for both two- and three-component models of the
magnetotail. We are not the first to suggest this, because
Lembege and Pllat (19821 mad Pella a eal. [1991] have preceded
us. albeit in the context of the simple two-component equilibrium
(1). We rind that for the two and three-component equilibria
given in this paper that if there is a collisionless tearing
instability in the magnetotaiL it is the electron tearing mode.
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There are certain conditions that must be fulfilled for the
electron tearing mode to be seen. A significant value of B. in
the two-component magnetotail, represented by (1), tends to
suppress the instability. The reason for this strong stabilization
can be understood in dynamical terms. In our view, the dynamics
are a symptom of a deeper cause which has to do with geometry.
The main cause of the stabilization of the tearing mode is that B.
destrys the separatrix at z = 0. By contrast, if we set B,. = 0
but include a By field, the separatrix at z = 0 is undisturbed,
and electron tearing modes can easily occur.

The main difficulty posed by the magnetotail is that all three
components of the magnetic field can be significanL Then, the
circumstances that favor electron tearing are those that inimi
global feanses of the dynamics such as electron bounce, and keep
the electron confined near z = 0. It is intuitively clem that the
By field tends to confine electrons near z = 0 and hence helps
the electron tearing instability grow. The asymptotic equilibria
presented in this paper have regions where the stabilizing effect
of electron bounce cma be neglected and where the presence of B.
-B,. can cause the excitation of electron tearing. A tearing
instability in which field lines actually undergo genuine
topological change does not occur unless B,. is very small.
Unless topological change occurs, the instability is likely to
saturate nonlinearly at a relatively low amplitude. We do not
believe that such a weak instability can account for the dramatic
signatures associated with current disruption and diversion
during substorms.

The instability is more interesting when B,. is zero. We have
demonstrated that if we include B. and allow it to vary spatially
in a three-dimensional magnetotail equilibrium, then B, can
vanish at near-Earth distances. The linear as well as the nonlinear
growth of electron tearing modes in such a configuration is likely
to lead to interesting results and will be investigated in the near
funtie.

An important challenge for a theory of substorms is that it
should account not only for the violent activity that is associated
with substorms, but also identify conditions under which the
magnetotail is stable. A universal instability that occurs always
and spontaneously is likely not to be a correct explanation
because that would suggest the magnetotail is always unstable,
which is not observed to be the case. In this work. we have
identified conditions under which electron tearing modes may be
unstable and delineated regimes when they are not. It is our hope
tha this paper, as well as its forerurmer (WBL). will stimulate a
reexamination of old as well as new data in substorms with a
renewed emphasis on the By field. Observationalists. many of
whom we have cited here, have been aware over the last 15 years
of the ubiquitous presence of the By field, varying spatially as
well as in time before and during different phases of a substorm.
What is required is a more systematic study correlating By and
B, with the occurrence of substorm onset. More two-species
electromagnetic particle simulations, including all three
components of the magnetic field, are also required. both to check
analytic theory and to model realistically global features of
magnetotail equilibria.

APPE!DI:X A: BoUNia MOTION OF ELECTRONS
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An electron gyrating along a field line in the magnetorail may.
under certain conditions, bounce between two tuning points.
Since B. (x. z) = B. (x, - z), the z coordinates of the turning
points may be written as z = ± z,. where the constant z, is
determined by the parallel energy of the electron.

1 2 1 2-JLB zK-pR. (Al)2-vil = •,,v- ,K- .A)

where g. is the magnetic moment. The bounce period is defined as

VI) (A2)
where I is the coordinate along a field line. Using the relation

di / B = dlI / B , we have

Zr

4 m\1/2 B d z 1/ J3"tb f 2"K") B, (I. - ;LB 1K)n ;3
0

Werecall that B,=tanhz and B,,= (I-z tanh z). For Iz1 5
1 , we use the approximations B, = z and B,-. = (1 - z2•) .
Since BE (z = t 1) = 0. we need consider only the domain 0 <
Izi 1. Equation (A3) may be then approximated as

, z it [z2 2(1 2)211/2
4b 1 dz 2) ( ) ] * (A4)

E(1 -z (1 -B(z) IB(zd)

Defining u2 = I - ztz,, we get

'rb = j Gd (M.)
bEVt z 2 U2 )2

If we take B. = E everywhere, as in Lembege and Pellat [19821,
we get

Ib = •oj (16U2)du . (2)
b E Vr 1*- 3e v

For z,- I, equation (A6) predicts a bounce period of rb = 25 S
(for E - 0.1 and v, - 2/s) . We show below that this is much
smaller than the bounce period in our asymptotic equilibria.

The integral (AS) can be evaluated exactly to give'-- (I_2-[ 12-12
"b = I z tan I z/ (-

2 1/2
1 2,-1/2 (0 + z2) + 2,

-- (1 +z') log - 4"'- J . (A7)

Clearly, 't, -r ., as 1zI -z , ; this means that some electrons are
lost and some have very large bounce periods. An average
bounce period for the confined electrons can be obtained by
averaging over the distribution function of electrons. For fixed
z we have



31

-V

where vL is the maximum parallel velocity above which the
electron is lost. Note that (A8) underestimates the bounce period
because it should be normalized by the fraction of confined
electrons which is smaller than 1. Since all bouncing electrons
pass through z = 0. we take the distribution at r = 0 to be
Maxwellian. We estimate vY - vj, [B(: = 1)/C - 111/2 .
Asymptotic evaluation of the integral (A8) gives < cb> -
3ea/slv,,. For e = 0.1. v, - 2/1. we get < Tb > - 102s in
region 1. In region 2, since B. is space-dependent. c is replaced
by e' e- 12 E/4, and the length scale is amnplified by el•2 (see
section (2.1)). Then <<cb> is amplified by a numnerical factor of
approximately 4eI/, which gives <Tb> Z 103s. For Y= "Cr3S .
wethushave T<Tb> << 1 inregion 1, but y<Tb> Z I in
region 2.

APPENDx B:
DISPERSION RELdATION FOR ELECTRON TEALiNc MODE,

In order to keep this paper self-contained, we review here the
derivation of the dispersion relation for electron tearing modes
using kinetic theory. The main effort lies in calculating the
perturbed current J, from the perturbed distribution function
Ac by means of the relation

Ji q. f dv vf,' .(1)

It is convenient to use (32) to write

f, - ,t,, + flu. (B2)

We recall that (Laval et aL., 1966; Galeev. 1984]

1 f: c 1 ^ CEI)
a dv v 2W = 21  X2cosh2(z/.) (B3)

Henice, oam Ampere's law,

t -L 72 At= q, fdy vf 1 0 , (B4)4n

we get

(2  a2'\ 2 A
X2+ )*~ At + . 2 cah2(z% I~x ar .2cosh (zAk)

4 ,• q.z

= -- d _ fdv lv . (BS)

From the linearized Vlasov equation it follows that

dt -T0
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where d/tdt a a/at + v V and fo, is the Maxwellian
distribution. Integrating (B6) along characteristics and
substituting the result in (BU), we getC 2  a2 ' 2 A

'2 ) A, 2 2
,x"az XL2cosh (zA)

2

C T

4n
S-- a ' El (B7)

where • is the collisionles conductivity tensor which can also
be written as (see. for instnce, Horwn and Tajma [1990]),

-* a T'L Q-r

x foa(r - -r) exp (ion - ikr fxve de] (B8)

Near z = 0. in the inner region I/azl >> Ia/axl -1A. Then

Y can be diagona•lzed in the form

z
0o01

S= o , o B0 9 )

0 0 a ,

weeAA A A A A A A

wrX = aX. t y -aYZ. mB/BfaB Y y+raz z with
a,,f-iB/J and a,=B,/B . We write Elf=facEly,- aE 1 1 .J •2 2
Ell = ayEEy + a1 ElE since a +ta: =1.

Defining W, •A 17y, X, a 4,, and writing. as in WBL, any
perturbed quantity such as w in the form V(z) exp(ikx - iot).
we get

C A

4n dz 2 2

=E a IE + as a.

2 2 -

a +ci 00 *I o) EY+ a Y ctI a ) E s (ElO)

where a.L z o = a,. Similarly.

-41 dz 2 -2 0 . /z

+ a a (a,L- a ) E. (Bl1)
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The parallel conductivity a, can be calculated by using the drift-
kinetic approximation for electrons. It can be shown that [Drake
and Lee. 1977; WBL, 1990]

2

jo = i-4n-- (o- *):2 Z'(s) E, (B12)

where

2

'1 " (0 -(co-o*) s Z'(s) (B13)
U4 )

where CO* = kV 4 ,. s = ml(kll vu), and Z(s) is the plasma
dispersion function.

The perpendicular conductivity a.L is mostly due to the ion
polarization drift, since the E x B drift carries no current. The
full ion response [Cowley et al. 1986; WBLJ essentially reduces
to

2 2

B 4irVA

where VA B/(4nn mi)1/2 is the Alfvdn velocity. Note that

2 2

2 229 V A (0 PS

v 2 k 2~ -2 -

<2 << m -10-<1 (B15)ko V 2 _ k 2'M
k0VA k0

for magnetotail plasmas. We then recover the result derived by
WBL i.e..

dno 2 2y

dr22
a z (B 16)

OLY az aLz 0( )

We now introduce two characteristic frequencies. One is (a, •
ktvi,. The other is we w T.71t-, where -;, is the time it takes for
in electron to travel a characteristic distance k-1 along x
[ViBL]. From the field-line equation

d- z .c (B 17)
S 2

it follows that if .-i electron travels C along x, it must travel z0

along z, where z, is given by the relation

2 2
:0 = X [I-exp(2rlkx)J. (BIS)

We then obtain (WEL]
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°I

0 0

-- exp (£Ak.). (B19)2c

We introduce the surained inner variable

z 1
- I .(B20)

where S,. (o/k vt,) (L,/so) and so 1 1 if a, > c (as in
region 3), but so = o1/o, if o), < we (as in region 2). The shear
length L, is defined by L, m. B(z = 0) B 0 . With these
definitions. (B 16) can be rewritten as

d( 2

dz2

a0  aoc0

a E£ E0

where a•0 •B,(0)/Bo, .o--B,(O)Bo. and

(1-m/o 2 .- 2 2A~) (-o'ft)8 l2  o , -

2 2 Z (4-), (B22)

which is the same as (77) of WBL.
Equation (B321) can be diagonalized as

2 (a,+2 C 0 a,
d 2 2+ o (B23)d4z a2 0 0 `2

where

a= aoW + zOX, (1124)

42 -e~i aoý(B25)

As shown by WBL. a2 ( =0) = 0. which yields

(05 = (ad % ) i (0). (B26)

The solution for a, is different in different regions.
In region 1, where yti, << I the integration over z involves a

bounce average which extends over the outer region. We can
then see the stabilizing effect of this botnce by noting that it
tends to cancel out the perturbed current in the inner region and
gives W = j - 0. In regions 2 and 3. however. we have yrb ? I
and yrb >> 1 . respectively. Integrating (1123) over the inner
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region, and using the "constant '4" approximation. we get the
jump condition

_ I = (OL + Eý a, (0) fJ(4A). (B27)
dF inner inner

In order to match the inner region to the outer region. we use the
relations

' d - 10% d - +

A - ,log i logi (B29)
d z '%oto 0- z

The left-hand side of (B27) can then be writen as

da d 8 a I:= ,da,

ine 'd ' '-d ine d4inner d4 0OW

= 8 a0 o) A + C (o) .. (B330)

The right-hand side of (B27) gives

0

inner 
f d l

22 .

2 tk0 (1 -0*/Co)=- 2 2Z (0). (B31)
a0 + £0

Using (B30) and (B3 1), we obtain the dispersion equation

D(kw) = kv- 'i'S 0 + I - 2j(0) = 0, (32)
2k2 L o)

where

2 2 (B33)

Equation (B32) is slightly different from the analogous equation
derived by WBL. The difference can be atributed primarily to
a slightly different treatment of the asymptotic matching
condition; here we have extended the outer solution all the way to
z - 0 instead of Wking it to the outer limits of the inner region.
In the rotation of WBL_ A'= A', + i Ai,; however, if we recall that
A - << A,9, it is cleu that the results derived by WBL and here
do not differ significantly. (In order to avoid possible
confusion, we point out that oa has been neglected in certain
results derived in WBL; this affects the real put of to, but not
the growth rate.) Solving the dispersion equation (B32). we
obtain wa and y, given. respectively, by (103) and (104) in
region 2 and (105) and (106) in region 3.

The growth rate derived from kinetic theory can also be
obtained from the fluid model. The fluid nalog of (106) has
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already been derived in section 3. Here we derive easily the
anolog of (104). Recalling the heuristic discussion given by
WBL (see section 3. WBL), wS have y ft w, a (o, k, v"/o, =
c/k,/(X.o,~). Here d, = AW2l%. which is obtained from (68).

with A, given by (88). If we now use (B25), we get (110)
which is larger than the growth rate derived from kinetic theory
by the factor 7t .
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